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a b s t r a c t 

In state-of-the-art big-data applications, the process of building machine learning models 

can be very challenging due to continuous changes in data structures and the need for hu- 

man interaction to tune the variables and models over time. Hence, expedited learning in 

rapidly changing environments is required. In this work, we address this challenge by im- 

plementing concepts from the field of intrinsically motivated computational learning, also 

known as artificial curiosity (AC). In AC, an autonomous agent acts to optimize its learning 

about itself and its environment by receiving internal rewards based on prediction errors. 

We present a novel method of intrinsically motivated learning, based on the curiosity loop, 

to learn the data structures in large and varied datasets. An autonomous agent learns to 

select a subset of relevant features in the data, i.e., feature selection, to be used later for 

model construction. The agent optimizes its learning about the data structure over time 

without requiring external supervision. We show that our method, called the Curious Fea- 

ture Selection (CFS) algorithm, positively impacts the accuracy of learning models on three 

public datasets. 

© 2019 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

In the data science field, researchers apply scientific methods, processes, and systems to extract knowledge or insights

from data in various forms, both structured or unstructured [10] . It is desirable to reduce high data dimensionality for

many machine learning tasks due to the “curse of dimensionality” [24] . Feature selection methods [18] provide a way to

build simpler and more comprehensive models and to improve their learning performances. However, in many scenarios,

data scientists are faced with a significant amount of data that must be processed in real time (or near-real time) to gain

insights [44] . In the worst cases, the size of the data is unknown and the data distribution changes over time; thus, it is

not practical to either wait until all the data is available before performing feature selection or to run the feature selection

process manually and repeatedly over time [28] . 

A similar challenge is encountered by exploring autonomous agents, namely, they are required to learn changing and

unknown environments. One class of such agents is known as intrinsically motivated agents: agents that engage in explo-

ration for its own sake rather than as a step toward solving a specific problem [1,35] . Computational approaches to intrinsic

motivation, also known as artificial curiosity, are typically based on architectures in which an agent learns to anticipate

the consequences of its actions and actively chooses its actions based on internal measures related to the novelty or pre-

dictability of the anticipated situation [35] . One example of computationally intrinsic motivation architecture is autonomous

Reinforcement Active Learning (ReAL). In conventional reinforcement learning schemes, the reward function is set exter-
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nally: the reward depends on the current state and action, and the function does not change over time. In contrast, in an

autonomous reinforcement active learning setup, the goal is to optimize on-line supervised learning [14,41] . 

The curiosity loop algorithm, which is based on ReAL, sets the reward as the prediction error of another learner. All

the parameters in the model are autonomously learned during development: they do not rely on external teachers or pre-

designed behaviors, but rather on the curiosity loop architecture [14–16] . This type of architecture, which can be applied to

any autonomously learning task, is also highly relevant for data science processes. 

In this contribution, we apply the concepts of intrinsically motivated autonomous agents to data structures. We imple-

ment the curiosity loop architecture for the task of learning the data structure and performing Curious Feature Selection

(CFS). First, the training data is divided into small episodes. In each episode, a new feature (action) is selected in an inner-

loop based on the already selected previous feature (state), and the internal reward consists of a reduction in the learning

model error [35] . The model runs in a loop on multiple episodes until it reaches convergence. The loop attempts to find a

feature-selection policy that optimizes the model accuracy. The entire process is completely autonomous in the sense that

all actions and rewards are determined autonomously. The resulting policy is used to construct a new learning model on

the entire training set and on an unseen testing set. We show that this architecture improves model accuracy compared to

running the learning model on the entire dataset or using common feature selection algorithms. 

This paper is organized as follows. First, we present related work regarding feature selection, reinforcement learning

and the basic curiosity loop in Section 2 . Section 3 describes the suggested Curious Feature Selection algorithm. The three

public datasets used for experiment are described in Section 4 , and Section 5 presents the experimental results. Finally,

Section 6 provides a discussion, conclusions, and future work. 

2. Related work 

2.1. Feature selection 

In the machine learning subfield, feature selection is the process of selecting a subset of relevant variables to be used

in model construction. Feature selection techniques are primarily intended to improve model prediction performances and

runtimes, to reduce model overfitting, and to increase generalization [18] . Several feature selection algorithms exist, most of

which use search techniques along with an evaluation index to find an appropriate feature subset. The most basic technique

searches all possible subsets and selects the subset that minimizes the model error. However, this exhaustive search is not

computationally effective, particularly in situations where a large number of features exist [6] . 

Feature selection algorithms can be divided into three main categories: Wrappers, filters [26] and embedded [3] methods.

Wrapper methods search the variable space for possible feature subsets and evaluate each by running a model. The

model is tested on a testing set to determine the model error rate, which is translated into a score for that subset. Finally,

the subset with the best score is selected. Search algorithms such as Sequential methods [21,25,36] , the Branch and Bound

method [26,33] or the Genetic Algorithm [13] can be used to find the best subset. These methods are computationally

intensive and have a risk of overfitting, but usually provide the best-performing feature set for that particular type of model

[3] . 

Sequential methods are the most commonly used wrappers methods for performing feature selection. They begin with

a single feature subset and iteratively add or remove features until some termination criterion is met. Sequential Forward

Selection (SFS) start with the empty set and add feature while Sequential Backward Selection start with the full set and

delete features. These methods do not examine all possible subsets and therefore do not guaranteed to produce the optimal

result [21,25,36] . 

Filter methods select variables without considering the model and are based on general measures such as the Pearson

correlation coefficient [2] , mutual information [26] , chi-square test scores [20] , and other measures. Filters provide a feature

subset that is not tuned to a specific type of predictive model, but they are usually less computationally intensive than

wrapper methods. 

The Chi square test is a statistical test of independence which determine the dependence of two variables. For feature

selection tasks, the Chi square test is used to calculate the statistics between each feature and the target variable to deter-

mine the existence of a relationship between them. If the target variable does not depend on specific feature, this feature

can be excluded. If they are dependent, the feature should be included in the feature subset [20] . 

Embedded methods are embedded in a specific learning algorithm that performs feature selection and classification

simultaneously. These methods combine the advantages of both previous methods and tend to fall somewhere between

them in terms of computational complexity [3,18] . 

Decision trees are iteratively constructed by splitting the data according to the value of a specific feature. The splitting

feature is selected by its importance for the classification task. Different algorithms use different metrics to select “the

best” feature. These algorithms typically measure the homogeneity of the target variable within the subset. In many cases,

only a subset of features is included in a decision tree. Therefore, the selection of features is implicitly embedded into the

algorithm and the decision trees can be understood as an embedded method [27] . 

Feature selection has been shown to be effective in numerous applications. However, over time, both the data sample size

and the feature numbers tend to grow continuously, and the characteristics of big data applications, such as data velocity

and variety, have brought new challenges to the existing feature selection methods [28] . In response, new feature selec-
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Fig. 1. Basic curiosity loop. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tion approaches such as structured sparsity-inducing feature selection (SSFS) methods [17] , online feature selection (OFS)

[48] , optimization framework for multi-label feature selection with streaming labels [32] and maximum relevance mini-

mum common redundancy method [7] have been proposed. While most of the feature selection methods are restricted to

batch learning setting, many of these new methods are online feature selection methods. They are dealing with large-scale

high-dimensional data [17,48] and with challenging scenarios such as streaming features, where not all features are avail-

able for each training instance [48] or streaming labels [32] in which the number of labels is unknown in advance. These

methods are assuming linear classifier for the learning model. 

The proposed Curious Feature Selection (CFS) method which is based on the curiosity loop and reinforcement learning

architectures, can be applied for both batch and online learning, it is not restricted to a specific predictor or specific feature

type and there is no need to know the number of features in advanced. In addition, it has other advantages such as better

accuracy, shorter running time and inherent responsiveness to changes in data structure over time. 

2.2. Reinforcement learning 

Reinforcement learning (RL) deals with learning a sequential decision making problem [43] . RL is a general class of

algorithms in the field of machine learning that aims at allowing an agent to learn how to behave in an environment by

taking actions and obtaining feedback that consists of a scalar reward signal [34] . In many applications, the RL environment

is formulated as a Markov decision process (MDP) [37] . In this model, an environment is modeled as a set of states and a

set of actions that can be performed to control those states. The goal is to control the system in such a way that maximizes

the future accumulated reward signal over the long run. In model-free RL, no prior knowledge about the MDP exists, and

the agent must interact, or experiment with the environment to gain knowledge about how to optimize its behavior. During

this process, the agent is guided by the reward feedback [5] . The agent interacts with its environment in discrete time

steps. At each step, the agent chooses an action from the set of available actions. Then, the environment changes to a new

state and the agent acquires the reward associated with that transition. The goal of the agent is to maximize its reward. At

the end of this process, the agent has learned a policy—a computable function that outputs an action for each state. Most

learning algorithms for MDPs compute the optimal policies by learning a value function that represents an estimate of how

advantageous it is for the agent to be in a certain state or to perform a certain action in a given state [34] . 

One of the most basic and popular methods to estimate value is the Q-learning algorithm [45] . The basic idea in Q-

learning is to incrementally estimate the Q-values for actions, based on rewards and the learned Q-value function. The

update rule uses the reward for an action and a max-operator over the Q-values of the next state to update Q t into Q (t+1) :

Q k +1 (s t , a t ) = Q k (s t , a t ) + α[ r t + γ max a Q k (s t+1 , a ) − Q k (s t , a t )] (1)

The agent takes a step in the environment from state s t to s t+1 using action a t while receiving reward r t . The update

occurs on the Q-value of action a t in the state s t from which action a t was executed, and the Q-value is the expected

discounted reward for executing this action [46] . 

2.3. Intrinsically motivated learning and the curiosity loop 

The basic intrinsically motivated learning [35] , also known as artificial curiosity [41] or the curiosity loop [14–16] , is

based on the reinforcement learning paradigm, which is composed of a learner (predictor) and an intrinsic reward. In each

loop, the agent selects an action and obtains an internal reward, which is based on prediction errors. The agent’s goal is

to select an optimal action that maximizes its learning and to learn an action selection policy that maps states to actions.

Each loop’s convergent dynamics leads to a specific behavior tightly related to the objective learnable correlation [14–16] . A

visual depiction of a curiosity loop is shown in Fig. 1 . 
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Fig. 2. CFS algorithm. 

 

 

 

 

 

 

 

 

 

 

 

Because the goal of the basic curiosity loop is to autonomously and actively learn a correlation in the best way possible,

the core of each loop is the learner, which attempts to map presented input-output pairs via an internally supervised learn-

ing algorithm. For each presented example, the learner acquires a prediction error (i.e., the difference between the expected

output and the correct output) and the reward value is set to this error [14–16,35] . Thus, the agent in the curiosity loop

actively learns via the reinforcement of the prediction errors. The agent determines which new example is presented to the

learner by selecting an appropriate action. Then, the learner produces the prediction error, which determines the intrinsic

reward. The reward is translated into a value function used to update the agent policy, which is then used in the next loop

to determine the next appropriate action to select [14–16] . 

3. Curious Feature Selection (CFS) 

The proposed Curious Feature Selection (CFS) algorithm ( Fig. 2 - number in parenthesis () indicates line number in the

algorithm) is based on the curiosity loop architecture. The agent’s task is to learn a policy that selects a subset of features

from the dataset. The set includes all the features that should be used for constructing a machine learning model for this

dataset. Our CFS method is based on the RL Q-learning algorithm. In this section, we describe the architecture of the CFS

method and compare its complexity to that of a brute-force exhaustive search. 
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3.1. Episode 

The dataset is divided into small chunks of constant size (i.e., episodes (3)). A new curiosity loop is executed in each

episode (2). The learned policy (23) is shared between episodes and converges over time and over episodes. The motivation

for episodic learning is to reduce the variance of the policy updates and achieve a more stable convergence. This approach

also imitates a stream of data; thus, not all data instances and features are available at any given time. 

3.2. States and actions 

The basic reinforcement learning model consists of a set of environment and agent states s ∈ S and a set of actions a ∈ A

that the agent can select. In the CFS algorithm, both the state space and the action space are equal to the data feature space

(1), that is, each state represents the previously selected feature (24) and each action is the next feature to select (13,16).

The state space contains one additional initial state s 0 that represents the state before any feature is selected (6). 

s ∈ S : { s 0 , f eature 1 , f eature 2 , · · · f eature n } (2)

a ∈ A : { f eature 1 , f eature 2 , · · · f eature n } (3)

Each state has a set of available actions A available ∈ A (7,8) that represents the features not yet selected in the current loop.

3.3. Learner and internal reward 

The learner can be any supervised machine learning model. The model attempts to learn an input (i)-output (o) trans-

formation: L ( O | I : χ ) where χ represents the parameters of the machine learning model. The learner finds the parameters χ
that best minimize the generalization error: 

L = arg max 
χ

(∑ 

i 

(O model (i ) − O real (i )) 2 
)

(4) 

At each time t , the learner is executed on the episode data, using the selected feature (action) and all the other features

that were selected in the current episode (17,18,19). After each execution, the model output O model (20) is compared to the

real output O real , resulting in a prediction error e t . The prediction error e t is compared to the previous error e t−1 (21), and

the reward r t is defined as the change in the error (22): larger changes in the error result in larger rewards. 

r t = e t−1 − e t (5) 

To calculate the reward for the first selected feature, we define an initial error, which is a prior error assumption (5). The

change in the error represents the importance of the last selected feature and the information it adds to the model. Thus,

when the agent selects a feature that adds valuable information to the model and, thus, reduces the total error, the reward

is high. 

3.4. State-action value function and policy 

The received internal reward is used to update a state-action value function that yields the expected utility of adding

a specific feature (action) to a given feature (state). The Q-learning method described in Section 2.2 , is used to update the

action-value function (23). 

The policy is the rule to follow when adding a specific feature (action) to a given feature (state). Starting with the initial

state, the optimal policy can be constructed by simply selecting the feature (action) with the highest value above some

threshold, setting this feature as the next state and repeating this operation until no more actions are available. 

s t+1 = arg max 
a 

(Q(s t , a t )) (6) 

3.5. Exploration vs. exploitation 

To balance between leveraging the model’s knowledge in each state by selecting the action with the highest estimate

action-value function (exploitation) and exploring the uncharted features space, the epsilon-greedy algorithm is used, and an

epsilon parameter ε is defined [23] . The action with the highest estimate action-value function is selected with a probability

of 1 − ε (15,16), while a random action (from A available ) is selected with a probability of ε (12,13). 

To improve exploration during the first few episodes, the parameters ε and α (learning rate) are set to high values

and then automatically reduced based on how many iterations have been completed [8] (9,10). In addition, an optimistic

Q-learning [11] approach is used, where the Q values are initialized to 1 (1). This creates a greedy policy with respect to

the Q-values for the first few episodes. The Q-value is updated with the actual value of the reward the first time each

state-action is selected (23). 
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Table 1 

Selectable algorithm parameters (number in parenthesis () indicates line number in the algorithm). 

Parameter Description Value 

Episode size N epi (1) Number of records in each episode 100 

Iterations itr (1) Total number of episodes 10 · data size ÷ episode size 

Learner learner (1) The supervised machine learning model used to define the 

internal reward 

Decision tree, Naive Bayes 

Initial error e 0 (5) The error associated with the initial state (i.e., prior error) 0.5 

Discount factor γ (1) The discount factor determines the importance of future 

rewards in the Q-Learning algorithm. A factor of 0 makes the 

agent ”myopic” so that it considers only the current reward 

0–0.01 

Epsilon ε (9) The probability of selecting a random action (from the 

available actions) in exploration mode 

0.9 to 0.1 using a step decay policy 

Learning Rate α (10) Update step 0.09 to 0.01 using a step decay policy 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.6. Algorithm parameters 

Most of the algorithm parameters are learned internally without external supervision; however a few selectable param-

eters are determined in advance. See Table 1 for the selectable algorithm parameters. 

3.7. Complexity analysis 

The proposed CFS algorithm can be classified as a wrapper method for feature selection [26] . Since most wrapper meth-

ods are computationally intensive [3] , we perform a complexity analysis. We compare the computational complexity of the

CFS algorithm with 2 methods: A brute-force exhaustive search which provide the optimal solution and Sequential Forward

Selection (SFS) method which is a very commonly used wrapper method. 

A brute-force exhaustive search finds the optimal solution by comparing all possible feature subsets. Each subset is used

to build a model for the dataset, and the subset that minimizes the model error is selected. Hence, by estimating the number

of required arithmetic operations, the complexity of this method is at most 

O 

(
N data · 2 

N f eatures 

)
(7)

Sequential Forward Selection (SFS) method start with the empty set and sequentially add the feature that minimize the

model error rate when combined with the features that have already been selected. In each step, all features that haven’t

been selected yet are been evaluated. By estimating the number of required arithmetic operations, the complexity of this

method is at most 

O 

(
N data · N f eatures 

2 
)

(8)

In comparison, the CFS algorithm runs using iterations (episodes) that are set in proportion to the data size. Each iteration

uses only a small portion of the data, and in the worst case, uses all the features inside a specific episode. Hence, using

similar logic, the complexity of this method is at most 

O (N data · N f eatures ) (9)

For datasets with fewer than 10 features, there is no advantage to using the CSF algorithm: a simple brute-force exhaus-

tive search will provide an optimal solution with less complexity. However, for datasets with more than 10 features the CFS

algorithm has a clear computational advantage. 

4. Datasets 

We analyze the performance of the CFS algorithm in classifying 3 datasets: The Adult and Diabetes 130-US hospitals for

the years 1999–2008 (Diabetes) datasets are from the UCI Machine Learning Repository [30] , and the Medical Appointment

No-shows dataset was sourced from Kaggle [19] . 

4.1. Dataset selection 

The datasets were chosen by the following characteristics conditions: 

(1) Number of instances is greater than 10,0 0 0 

(2) Number of features is greater than 10 

(3) Features types: Categorical & Numerical 
(4) Balanced Data: the representation of each of the different classification label in data is over 30%. 
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Table 2 

Adults dataset features list. 

Feature Description and values 

age Continuous number 

workclass Private, Self-emp-not-inc, Self-emp-inc, Federal-gov, Local-gov, State-gov, Without-pay, Never-worked 

education Bachelors, Some-college, 11th, HS-grad, Prof-school, Assoc-acdm, Assoc-voc, 9th, 7th–8th, 12th, Masters, 1st–4th, 10th, 

Doctorate, 5th–6th, Preschool 

marital-status Married-civ-spouse, Divorced, Never-married, Separated, Widowed, Married-spouse-absent, Married-AF-spouse 

occupation Tech-support, Craft-repair, Other-service, Sales, Exec-managerial, Prof-specialty, Handlers-cleaners, Machine-op-inspct, 

Adm-clerical, Farming-fishing, Transport-moving, Priv-house-serv, Protective-serv, Armed-Forces 

relationship Wife, Own-child, Husband, Not-in-family, Other-relative, Unmarried 

race White, Asian-Pac-Islander, Amer-Indian-Eskimo, Other, Black 

sex Female, Male 

capital-gain Continuous number 

capital-loss Continuous number 

hours-per-week Continuous number 

native-country United-States, Cambodia, England, Puerto-Rico, Canada, Germany, Outlying-US, India, Japan, Greece, South, China, Cuba, Iran, 

Honduras, Philippines, Italy, Poland, Jamaica, Vietnam, Mexico, Portugal, Ireland, France, Dominican-Republic, Laos, Ecuador, 

Taiwan, Haiti, Columbia, Hungary, Guatemala, Nicaragua, Scotland, Thailand, Yugoslavia, El-Salvador, Trinadad-Tobago, Peru, 

Hong, Holland-Netherlands 

income above 50 K, below 50 K 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The first condition ensures that the data is large enough for multiple iterations running. The second condition is deter-

mined by the complexity analysis which indicates that the algorithm’s advantage is for datasets with more than 10 features.

The third condition ensures that the experiments represent business application which mostly include variables of different

types and the last condition supports the algorithm’s episodes approach since the episodes’ size is relatively small, and the

episode data should include a representation of each of the labels. 

4.2. Data cleaning and transformation 

First, we applied data cleaning and transformation methods to the datasets. The purpose of data cleaning is to identify

incomplete, incorrect, inaccurate or irrelevant data and replace or delete them to improve data quality [39] . The purpose

of data transformation is to convert data from one format or structure into another format or structure required for the

analysis [38] . The data cleaning steps included removing missing values by removing records with missing values in one or

more columns and dropping redundant features, such as features containing both id and description columns, and irrelevant

features such as indexes. The data transformation included converting all feature values into integers by encoding the labels

with value between 0 and n labels -1. 

4.3. Adult dataset 

The Adult dataset stems from data collected during the U.S. Census and consists of sampled data of the adult population

in the United States from 1994. After data preprocessing, the dataset contained 50,0 0 0 instances with 12 demographic

features that described the respondents, including age, gender, country of origin, marital status, education, and a variable

indicating whether the individual’s income exceeded 50 K dollars per year or not. Table 2 provides a full list of the features

and their descriptions. 

4.4. Diabetes dataset 

The Diabetes data was extracted from the Health Facts database (Cerner Corporation, Kansas City, MO), a national data

warehouse that collects comprehensive clinical records from hospitals throughout the United States. It was submitted to the

UCI Machine Learning Repository on behalf of the Center for Clinical and Translational Research, Virginia Commonwealth

University [42] . After data preprocessing, the dataset contained 10 0,0 0 0 instances with 44 features describing encounters

with diabetic patients, including their demographics, diagnoses, diabetic medications and number of visits in the year pre-

ceding the encounter. Table 3 provides a complete list of the features and their descriptions. 

4.5. Medical appointment no-shows 

The Medical Appointment No-shows data was donated to Kaggle by Joni Hoppen. This experiment attempts to predict

whether or not a patient will attend an appointment using examples of patient attendance for scheduled appointments. Af-

ter data preprocessing, the dataset contained 30 0,0 0 0 instances with 12 features describing each patient, including personal

data, medical data, and data about the appointment. Table 4 provides a full list of the features and their descriptions. 
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Table 3 

Diabetes dataset features list. 

Features Description and values 

Race Values: Caucasian, Asian, African American, Hispanic, and other 

Gender Values: male, female, and unknown/invalid 

Age Grouped in 10-year intervals: 0, 10), 10, 20)„ 90, 100) 

Admission type Integer identifier corresponding to 9 distinct values, for example, emergency 

Discharge disposition Integer identifier corresponding to 29 distinct values, for example, discharged to home. 

Admission source Integer identifier corresponding to 21 distinct values, for example, physician referral. 

Time in hospital Integer number of days between admission and discharge 

Number of lab procedures Number of lab tests performed during the encounter 

Number of procedures Number of procedures (other than lab tests) performed during the encounter 

Number of medications Number of distinct generic names administered during the encounter 

Number of outpatient visits Number of outpatient visits of the patient in the year preceding the encounter 

Number of emergency visits Number of emergency visits of the patient in the year preceding the encounter 

Number of inpatient visits Number of inpatient visits of the patient in the year preceding the encounter 

Diagnosis 1 The primary diagnosis (coded as first three digits of ICD9); 848 distinct values 

Diagnosis 2 Secondary diagnosis (coded as first three digits of ICD9); 923 distinct values 

Diagnosis 3 Additional secondary diagnosis (coded as first three digits of ICD9); 954 distinct values 

Number of diagnoses Number of diagnoses entered to the system 

Glucose serum test result Indicates the range of the result or if the test was not taken 

A1c test result Indicates the range of the result or if the test was not taken 

Change of medications Indicates if there a change in diabetic medications occurred 

Diabetes medications Indicates if any diabetic medication was prescribed yes and no 

23 features for medications Indicates whether the drug was prescribed or there was a change in dosage 

Readmitted Days to inpatient readmission. Values: < 30, > 30 and No for no record of readmission 

Table 4 

Medical appointment no-shows dataset features list. 

features Description and values 

Age Continues number 

Gender M = Male, F-Female 

DayOfTheWeek appointment’s day of the week 

Diabetes Indicates whether the patient has diabetes, yes and no 

Alcoholism Indicates whether the patient is alcoholic, yes and no 

Hypertension Indicates whether the patient suffers from hypertension, yes and no 

Handicap Indicates whether the patient has a handicap, yes and no 

Smokes Indicate whether the patient smokes, yes and no 

Scholarship Indicates whether the patient receives funds from the Bolsa FamÃlia program, yes and no 

Tuberculosis Indicates whether the patient suffers from tuberculosis, yes and no 

Sms_Reminder Indicates whether the patient received an SMS reminder before the appointment, yes and no 

Wait_Time Number of days from appointment registration to appointment date 

Show_Up Indicates whether the patient kept the appointment, yes and no 

 

 

 

 

 

 

 

 

 

 

 

5. Results 

5.1. Experimental setting 

We executed the CFS algorithm on the datasets described in Section 4 . As a preliminary step, each of the datasets is split

into a training dataset (90%) and testing dataset (10%). The training dataset is used to train the CFS algorithm and select the

policy for the feature subset. The testing dataset is used to rebuild the model based on the subset of selected features and

to evaluate the model on new data. On each dataset, the CFS algorithm was tested with 2 learners (Decision tree and Naive

Bayes). Specifically, these learners were selected since they are applicable for both categorical and numerical features types.

Except for the discount factor, all the parameters in Section 3.6 were the same in all the experiments. The discount factor

was set to 0.01 for the Adult and No-Shows datasets and to 0 for the Diabetes dataset. Each experiment was repeated 30

times and the average result was taken. 

5.2. Comparison algorithms 

We compared the CFS algorithm results on the testing dataset with 4 traditional, popular and commonly used feature

selection algorithms. The algorithms represent each one of the feature selection categories: including the Sequential For-

ward Selection (SFS) wrapper method [25] , 2 filter methods: the Variance Threshold method, which removes all features

whose variance does not meet some threshold and the Chi-Square test [20] , and one embedded method based on the GINI

importance score for decision tree [4] that measures the average gain of purity by splitting a given variable. 
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Fig. 3. Test dataset average results. 

 

 

 

 

 

 

5.3. Result comparison 

Fig. 3 depicts the convergence process with respect to the number of episodes (iterations) for each experiment. Each

episode is described by the mean accuracy and standard deviation of the 30 experimental runs. 

Tables 5–7 list the experimental results of the algorithms in terms of the selected features policy. Table 8 lists the ex-

perimental results of the CFS and the feature selection comparison algorithms in terms of the classification accuracy on the

testing dataset. Table 8 shows the following: 

(1) In all the experiments, the CSF algorithm’s best policy achieved the highest classification accuracy, i.e., 85.5% for Adult:

Decision tree, 79% for Adult: Naive Bayes, 58.07% for Diabetes: Decision tree, 78.17% for Diabetes: Naive Bayes, 68.93%

for No-shows: Decision tree and 68.86% for No-shows: Naive Bayes. In No-shows: Decision tree, Sequential Forward

Selection achieved the same accuracy (68.93%). 
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Table 5 

Selected features policy—Adult dataset. 

Decision tree Naive Bayes 

Best policy 2, 3, 6, 7, 8, 9, 11 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 

Most converged policy 2, 3, 5, 6, 7, 8, 9, 11 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 

Sequential Forward Selection 2, 3, 4, 8, 9 0, 1, 2, 5, 8, 9 

Variance Threshold Method 0, 2, 3, 4, 5, 7, 8, 9, 10 

Chi-square test (highest scoring 80% features) 0, 2, 3, 4, 5, 7, 8, 9, 10 

Chi-square test (highest scoring 60% features) 0, 3, 5, 7, 8, 9, 10 

DT GINI Importance 0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11 

Features : 0: age, 1: workclass, 2: education, 3: marital.status, 4: occupation, 5: relationship, 6: race, 7: sex, 8: capital.gain, 9: capital.loss, 10: 

hours.per.week, 11: native.country 

Table 6 

Selected features policy—Diabetic dataset. 

Decision tree Naive Bayes 

Best & most converged policy 12 25, 12, 38 

Sequential Forward Selection 3–4, 12, 24, 27, 31–34, 45, 38–41 0, 11–12, 24, 27, 32–34, 45, 36, 38–39, 41 

Variance Threshold Method 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,18,36,42 

Chi-square test (highest scoring 80% features) 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,24,25,26,27,28,29,32,33,36,38,40,41,42,43 

Chi-square test (highest scoring 60% features) 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,19,24,25,27,33,38,40,42,43 

DT GINI Importance 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,18,19,25,26,36,42 

Features : 0: race, 1: gender, 2: age, 3: admission_type_id, 4: discharge_disposition_id, 5: admission_source_id, 6: time_in_hospital, 7: num_lab_ 

procedures, 8: num_procedures, 9: num_medications, 10: number_outpatient, 11: number_emergency, 12: number_inpatient, 13: diag_1, 14: diag_2, 

15: diag_3, 16: number_diagnoses, 17: max_glu_serum, 18: A1Cresult, 19–41: features for medications, 42: change, 43: diabetesMed 

Table 7 

Selected features policy—No-shows dataset. 

Decision tree Naive Bayes 

Best & most converged policy 3, 4, 6, 7, 9 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 

Sequential Forward Selection 1, 2, 7 0, 1, 2, 3, 6, 7, 10 

Variance Threshold Method 0, 2, 10, 11 

Chi-square test (highest scoring 80% features) 0, 1, 2, 3, 4, 5, 7, 8, 11 

Chi-square test (highest scoring 60% features) 0, 2, 3, 4, 5, 8, 11 

DT GINI Importance 0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 11 

Features : 0: Age, 1: Gender, 2: DayOfTheWeek, 3: Diabetes, 4: Alcoholism, 5: Hypertension, 6: Handicap, 7: Smokes, 8: Scholarship, 9: Tuberculosis, 

10: SMS_Reminder, 11: Wait_Time 

Table 8 

Test dataset accuracy. 

Adults Diabetes No-shows 

Decision tree Naive Bayes Decision tree Naive Bayes Decision tree Naive Bayes 

Policy Average 83.62% 78.97% 57.52% 56.68% 68.91% 68.85% 

Best policy (# of experiments) 85.5% (2) 79% (26) 58.07% (22) 58.17% (1) 68.93% (5) 68.86% (14) 

Most frequent policy (# of experiments) 85.1% (9) 79% (26) 58.07% (22) N/A 68.93% (5) 68.86% (14) 

Baseline (all columns) 78.9% 79% 46.08% 45.06% 58.53% 58.67% 

Sequential Forward Selection 85.08% 78.82% 57.17% 58.12% 68.93% 68.75% 

Variance Threshold Method 79.6% 79% 46.95% 45.06% 60.81% 58.59% 

Chi-square test (highest scoring 80% features) 79.2% 79% 45.86% 45.06% 58.28% 58.36% 

Chi-square test (highest scoring 60% features) 80.7% 78.8% 48.3% 45.06% 59.73% 58.36% 

DT GINI Importance 79.6% 79% 46.9% 45.06% 58.79% 58.31% 

 

 

 

 

 

 

 

(2) In all the experiments except for Adult: Naive Bayes and No-shows: Decision tree, the CSF algorithm achieved the

highest average classification accuracy, i.e., 83.62% for Adult: Decision tree, 78.97% for Adult: Naive Bayes, 57.52% for

Diabetes: Decision tree, 56.68% for Diabetes: Naive Bayes and 68.85% for No-shows: Naive Bayes. 

(3) In most cases, The converged policy is the best feature-set policy in most of the experimental runs (i.e., the variance

in convergent policies is extremely small). 

On the Adult dataset, the traditional feature selection methods reduced the number of features from 12 features to

5–6 features (Sequential Forward Selection), 7 features (Chi-square test - 60%), 9 features (Variance and Chi-square test

- 80%) and 11 features (DT GINI importance), and in most of the cases improved the model accuracy compared to the

baseline accuracy when using all 12 features. For the decision tree model, the baseline accuracy is 78.9%. The best traditional
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method is the Sequential Forward Selection which achieved an accuracy of 85.08%. The other traditional methods improve

the baseline accuracy in 0.3%–1.8%. The CSF algorithm best policy included 7 features and achieved an accuracy of 85.5%,

6.6% higher than the baseline and 0.42% higher than the Sequential Forward Selection. For the Naive Bayes model, feature

reduction does not improve model accuracy, and in some cases, it reduces the accuracy. The CSF algorithm’s best and most

frequent policy (26 out of 30) includes all features for Naive Bayes. 

On the Diabetic dataset, the traditional feature selection methods reduce the number of features from 44 to 13–14 fea-

tures (Sequential Forward Selection),20 features (Variance), 23 features (DT GINI importance), 26 features (Chi-square test

- 60%) and 35 features (Chi-square test - 80%), and in some cases improved the model accuracy compared to the baseline.

However, in other cases it did not change the accuracy or reduce the accuracy. For the decision tree model, the baseline

accuracy was 46.08%. The best traditional method (Sequential Forward Selection) achieved an accuracy of 57.17% and im-

proved the baseline accuracy by 11.09%. The CSF algorithm’s best and most frequent policy (22 out of 30) included only one

feature and achieved an accuracy 11.27% higher than the baseline. For the Naive Bayes model, Sequential Forward Selection

methods achieved accuracy of 58.12% however, the other traditional feature selection methods didn’t change the model ac-

curacy (45.06%). The CSF algorithm’s best and most frequent policy (5 out of 30) which included only 3 features, achieved

an accuracy of 58.17% and improved on the baseline method by 13.11%. 

On the No-shows dataset, the traditional feature selection methods reduced the number of features from 12 to 3 features

and 7 features (Sequential Forward Selection), 4 features (Variance), 7 features (Chi-square test - 60%), 8 features (Chi-square

test - 80%) and 11 features (DT GINI importance). Similar to the diabetic dataset, beside the Sequential Forward Selection

method, the other methods do not consistently improve the model accuracy compared to the baseline. For the decision tree

model, the baseline accuracy was 58.53%. The Sequential Forward Selection method achieved an accuracy of 68.93%, 10.5%

higher than the baseline. The CSF algorithm’s best policy included 5 features and achieved the same accuracy. For the Naive

Bayes model, the Sequential Forward Selection method achieved an accuracy of 68.75%, 10.08% higher than the baseline. The

CSF algorithm’s best and most frequent policy (14 out of 30) achieved slightly better results, increasing the accuracy from

the baseline’s 58.67% to 68.86% using 10 features. 

6. Discussion and future work 

In this paper, we have presented a new Curious Feature Selection (CFS) algorithm based on the curiosity loop architecture

[14] . Unlike other feature selection methods, which are restricted to either batch or online learning setting, the proposed

method can be applied for both batch and online learning, it is not restricted to a specific predictor, and has other advan-

tages such as running time and responsiveness to data changes. In this feature selection mechanism, a curious agent, using

an internal reward system [35] autonomously learns the set of actions (features) that must be selected to maximize the

accuracy of a target learning model. We evaluated the algorithm on 3 datasets and showed that the results obtained by the

features chosen by the CFS policy were better than the results of standard feature selection methods and achieved higher

accuracy. 

In the current experiments, running the algorithm several times on the same dataset did not produce the same conver-

gent feature set (i.e., policy). This situation appears to occur for two main reasons: 

(1) The exploration parameter ε is set to a high value during the first episodes to foster a wider search in the feature

space. This improves the results of the model but leads to high randomization and, in certain cases, to different policy

results. 

(2) The algorithm is based on a Markov Decision Process [37] with no memory. The current state is defined only by

the last selected feature and not by all the features selected so far. This leads to situations in which the decision to

select a specific feature based on a specific feature state results in a different reward, because the reward depends

on the location from which the features are selected during the episode. In other words, although we used a Markov

algorithm, the scenario is highly non-Markov; thus, any convergence proof is not applicable. 

On one hand, the disadvantage of a policy that does not converge uniformly is that the algorithm must be run several

times to obtain the best policy. On the other hand, its advantage is that each policy gives different insights about how

specific features-sets explain the data. By getting several policies, the researcher can achieve more insights and select the

policy that best fits the specific problem. 

An additional consideration when using the algorithm and selecting a learner is that the CFS is most suitable for cases in

which the model accuracy can be improved by choosing fewer features. It is less relevant, for example, when using ensemble

models such as Random Forest [29] or Gradient Boosting [12] which work well using the entire feature set. 

The main value of the CFS algorithm is that it can be implemented for big data applications, in which the data streams

are large, heterogeneous and often unlabeled, and the task involves exploring complex and evolving relationships among

the data in real time [47] . The algorithm’s advantages for big data applications are as follows: 

(1) The algorithm does not depend on feature type; it can be applied to various types of features (numeric, categorical,

binary, etc.), assuming that the selected learner is applicable for the available data types. 

(2) Similarly, the algorithm can be used for unsupervised learning tasks by simply replacing the learner with an unsuper-

vised learner such as clustering [22] and adjusting the reward function to an unsupervised evaluation measurement

[40] . 
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(3) Because the algorithm learns in small episodes, similar to the mini-batch approach [9] , it can be applied as an on-line

algorithm on a data stream. The algorithm learns the data structure over time and updates the policy accordingly. 

(4) Finally, one important property of big data applications is the ability to implement them in a distributed manner to

support scalability. Scaling up an algorithm based on a reinforcement learning architecture is not simple and often

not practical. Recently, however, novel algorithms that extend reinforcement learning to distributed computing have

been introduced [31] . 

The Sequential Forward Selection (SFS) algorithm which is greedy and simple, presents similar accuracy results compar-

ing to the proposed Curious Feature Selection algorithm. Nevertheless, we believe that the new proposed algorithm has 3

main advantages comparing to the SFS: 

(1) Overfitting - The SFS algorithm achieves better results on the training dataset while the CFS achieves better results

on the Test dataset. This can indicate that the SFS is overfitted to train data and can explain less well unseen data 

(2) Online learning - In some big data scenarios, the data stream contains a new data structure, and there is a need to

perform a new feature selection which will capture the change but with respect to the data history. Unlike the SFS

algorithm which need to be run on the entire history data together with the new data, the CFS algorithms which has

already captured the entire history structure inside the policy, can be run only on the new data to update the policy.

(3) Scale - The complexity analysis indicated that as increasing the number of features and /or the size of the data, the

CFS will become more efficient compare to the SFS in terms of run time. 

In future work we intend to (i) apply neural network architecture to the policy to better represent a non-Markovian state

by remembering all the selected features so far; (ii) modify the algorithm to support unsupervised learning tasks; (iii) use

the curiosity loop paradigm to address additional big data tasks such as active learning and data sampling. 

In summary, we introduced and analyzed the Curious Feature Selection algorithm, which is based on the curiosity loop

paradigm. We showed that CFS improves the classification accuracy of various models compared to standard feature selec-

tion algorithms. Finally, we discussed the strengths and weaknesses of the model and its relevance to big data domains. 
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